3.184 \(\int \frac{\sqrt{1-x^2}}{\sqrt{2-3 x^2}} \, dx\)

Optimal. Leaf size=20 \[ \frac{E\left (\sin ^{-1}\left (\sqrt{\frac{3}{2}} x\right )|\frac{2}{3}\right )}{\sqrt{3}} \]

[Out]

EllipticE[ArcSin[Sqrt[3/2]*x], 2/3]/Sqrt[3]

________________________________________________________________________________________

Rubi [A]  time = 0.0068373, antiderivative size = 20, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.043, Rules used = {424} \[ \frac{E\left (\sin ^{-1}\left (\sqrt{\frac{3}{2}} x\right )|\frac{2}{3}\right )}{\sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - x^2]/Sqrt[2 - 3*x^2],x]

[Out]

EllipticE[ArcSin[Sqrt[3/2]*x], 2/3]/Sqrt[3]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{1-x^2}}{\sqrt{2-3 x^2}} \, dx &=\frac{E\left (\sin ^{-1}\left (\sqrt{\frac{3}{2}} x\right )|\frac{2}{3}\right )}{\sqrt{3}}\\ \end{align*}

Mathematica [A]  time = 0.006326, size = 20, normalized size = 1. \[ \frac{E\left (\sin ^{-1}\left (\sqrt{\frac{3}{2}} x\right )|\frac{2}{3}\right )}{\sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - x^2]/Sqrt[2 - 3*x^2],x]

[Out]

EllipticE[ArcSin[Sqrt[3/2]*x], 2/3]/Sqrt[3]

________________________________________________________________________________________

Maple [A]  time = 0.015, size = 23, normalized size = 1.2 \begin{align*}{\frac{\sqrt{2}}{6} \left ({\it EllipticF} \left ( x,{\frac{\sqrt{6}}{2}} \right ) +2\,{\it EllipticE} \left ( x,1/2\,\sqrt{6} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x^2+1)^(1/2)/(-3*x^2+2)^(1/2),x)

[Out]

1/6*2^(1/2)*(EllipticF(x,1/2*6^(1/2))+2*EllipticE(x,1/2*6^(1/2)))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-x^{2} + 1}}{\sqrt{-3 \, x^{2} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)^(1/2)/(-3*x^2+2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-x^2 + 1)/sqrt(-3*x^2 + 2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-x^{2} + 1} \sqrt{-3 \, x^{2} + 2}}{3 \, x^{2} - 2}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)^(1/2)/(-3*x^2+2)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-x^2 + 1)*sqrt(-3*x^2 + 2)/(3*x^2 - 2), x)

________________________________________________________________________________________

Sympy [A]  time = 4.21761, size = 34, normalized size = 1.7 \begin{align*} \begin{cases} \frac{\sqrt{3} E\left (\operatorname{asin}{\left (\frac{\sqrt{6} x}{2} \right )}\middle | \frac{2}{3}\right )}{3} & \text{for}\: x > - \frac{\sqrt{6}}{3} \wedge x < \frac{\sqrt{6}}{3} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x**2+1)**(1/2)/(-3*x**2+2)**(1/2),x)

[Out]

Piecewise((sqrt(3)*elliptic_e(asin(sqrt(6)*x/2), 2/3)/3, (x > -sqrt(6)/3) & (x < sqrt(6)/3)))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{-x^{2} + 1}}{\sqrt{-3 \, x^{2} + 2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x^2+1)^(1/2)/(-3*x^2+2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(-x^2 + 1)/sqrt(-3*x^2 + 2), x)